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Abstract. A first Born approach to intense laser modified proton-helium electron capture collision is given.
Theoretical results show that the angular distribution peaks forward sharply. For a geometry of laser
polarization vector parallel to the incident direction, the dressing effect on the differential cross section
covers a relatively wide angular range; while for a perpendicular geometry, the result is modified only in a
very small angular region. The integral cross sections get highly promoted by laser with the impact energy
increasing. The modified cross sections are increasing functions of field strength, but decreasing functions
of field frequency. Comparisons with the laser assisted electron capture from atomic hydrogen are made.

PACS. 34.50.Rk Laser-modified scattering and reactions – 34.70.+e Charge transfer – 32.80.Wr Other
multiphoton processes

1 Introduction

A recent paper of this series [1] has dealt with the intense
laser assisted electron capture into the dressed ground
state of hydrogen in the collision of a proton with a dressed
hydrogen atom. The results showed that the presence of
a laser background promotes the capture cross sections
significantly.

For target atoms which possess more than one elec-
tron, an investigation into the dressing effect on charge
transfer cross sections is necessary. Experimental test of
such captures may be more feasible than the capture from
atomic hydrogen. In this paper, we calculate the simplest
case,

p+ He
Laser
−→ H + He+. (1.1)

As in the preceding work, the laser field is treated as a
linearly polarized classical electromagnetic field,

A = A0 cosωt =
c

ω
ε0 cosωt (1.2)

where ε0 is the electric vector of the field. The field
strength is supposed to be far less than one atomic unit
(i.e. the Coulomb field strength at the first Bohr radius of
the hydrogen atom).

In the laser-free case, electron capture has been ex-
tensively studied during the past decades [2,3]. For cap-
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ture from hydrogen and helium targets, the first Born ap-
proximation (FBA) seems to agree with experiment well,
at least in the intermediate and high energy range [4–7].
With this in mind, the FBA is employed in the present
calculation to treat the proton-dressed-helium scattering.

The arrangement of this paper is as follows. In Sec-
tion 2, we extend the theoretical treatment in reference
[1] to treat the laser-assisted electron capture from he-
lium. In Section 3, the laser modified cross sections and
their dependence on each laser parameter are discussed.
Section 4 is concluding remarks. Some comparisons with
the capture from a hydrogen target are made. The atomic
units e = m = 1 are used throughout in all computations,
although in some figures the common units are used for
explicitness.

2 Theory

For reaction (1.1), we choose the coordinate system as
shown in Figure 1. Let the origin be on the target nucleus
(N). The masses are labeled as follows: MP = proton,
MN = helium nucleus, m = 1 = electron. The laboratory
particle coordinates are defined as r0 = proton, r1,2 =
electrons. Then the relative coordinates of initial and final
states are,

R = r0 − (r1 + r2)/(MN + 2) (2.1)

R′ = (MP r0 + r1)/(MP + 1)− r2/(MN + 1). (2.2)



238 The European Physical Journal D

Fig. 1. The coordinate system used for description of the laser-
assisted proton-helium electron capture collision.

In FBA, the S-matrix element for the electron capture of
proton from a dressed ground state helium into a dressed
ground state hydrogen is,

SB1 =−i
√

2

∫ ∞
−∞

dt < χF (R′, t)ψH
0 (r10, t)ψ

He+

0 (r2, t)|

VI,F |χI(R, t)ψ
He
0 (r1, r2, t) > (2.3)

where χI and χF represent, respectively, the incoming
plane wave of proton and the outgoing plane wave of the

newly formed atomic hydrogen in final state. ψH
0 , ψHe+

0 ,
and ψHe

0 denote the laser dressed wave functions of the fi-
nal state hydrogen, the residual helium ion, and the target
helium respectively. VI,F is the prior or post interaction.
It is well-established that the prior and post cross sec-
tions are equal provided that the exact atomic wave func-
tions are used in the S-matrix element [5]. Since only the
approximate atomic wave functions are available in the
present calculation, some discrepancy may occur. How-
ever, for the laser-free case, the discrepancy is quite small
[7], and we would expect the discrepancy to be also small
in the laser modified case. It is more practical to use the
prior form of interaction which presents less complexity in
calculations.

For a ground state atom A, the dressed wavefunction
in soft-photon approximation is given by [8],

ψA0 (x1, · · · ,xA, t) = e−iW
A
0 t
[
φA0 (x1, · · · ,xA)

− cosωt φ̃A0 (x1, · · · ,xA)
]

(2.4)

where

φ̃A0 (x1, · · · ,xA) =
1

ωAc
A0 ·

A∑
j=1

pjφ
A
0 (r1, · · · ,xA)

= −
i

ωAω
ε0 ·

A∑
j=1

∇xjφ
A
0 (r1, · · · ,xA)

(2.5)

φA0 is the ground state wave vector for the laser-free case,
the binding energy of which is WA

0 , and ωA is the average
excitation energy [9].

Substituting the wavefunctions for each dressed atom
and ion into equation (2.3), and working out the time
integration, we obtain the S-matrix element in the form

SB1 =
i

2π

+1∑
l=−1

fB1

l δ(EF +WH
0 +WHe+

0 −EI−W
He
0 +lω)

(2.6)

in which

fB1
0 = fB1(φHe

0 −→ φH
0 φ

He+

0 ) (2.7)

fB1
±1 = fB1(φ̃He

0 −→ φH
0 φ

He+

0 ) + fB1(φHe
0 −→ φ̃H

0 φ
He+

0 )

+ fB1(φHe
0 −→ φH

0 φ̃
He+

0 ) (2.8)

are scattering amplitudes corresponding to the transfer
of l = 0, and ±1 photons between the collision system
and the laser field. Here we have dropped the transitions
between dressed terms. The scattering amplitude of equa-
tion (2.7) for the laser-free case can be written as

fB1
0 = −

µF

2π

∫
d3(Rr1r2)e−ikF ·R

′

eikI ·R

× φH∗
0 (r10)φHe+∗

0 (r2)VIφ
He
0 (r1, r2)

= −
µF

2π

∫
d3(r0r1r2)e−iq0·r0e−iq1·r1e−iq2·r2

× φH∗
0 (r10)φHe+∗

0 (r2)VIφ
He
0 (r1, r2) (2.9)

where µF = (MP + 1)(MN + 1)/(MP + MN + 2) is the
reduced mass of the final state. q0, q1 and q2 are the
momenta transfer of the proton, the transferred electron
e1, and the passive electron e2 respectively,

q0 = kFMP /(MP + 1)− kI (2.10)

q1 = kF /(MP + 1) + kI/(MN + 2) (2.11)

q2 = −kF /(MN + 1) + kI/(MN + 2). (2.12)

Because the momentum transfer of the passive electron
is much less than that of the incident proton and of the
captured electron, we may set q2 ≈ 0 to simplify the cal-
culation [6]. Equation (2.9) is then reduced to

fB1
0 = −

µF

2π

∫
d3(r0r1r2)e−iq0·r0e−iq1·r1

× φH∗
0 (r10)φHe+∗

0 (r2)(
2

r0
−

1

r10
−

1

r20
)φHe

0 (r1, r2).

(2.13)

We chose the approximate ground state wave function of
helium in the Hartree-Fock form [10],

φHe
0 (r1, r2) = φ0(r1)φ0(r2) (2.14)
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where

φ0(r) =
1
√

4π

2∑
i=1

Cie
−αir (2.15)

with C1 = 2.60505, C2 = 2.08144, α1 = 1.41, and α2 =
2.61. Then the amplitude equation (2.13) can be reduced
to parametric differentiations of a numerical integral. That
is

fB1
0 = 16µF

2∑
i,j=1

CiCjIij (2.16)

in which

Iij =
2

β3
j

∂

∂αi
(
∂

∂λ
−

∂

∂γ
)I(q0, γ,q1, αi, λ)

+ (
2

β3
j

−
1

β2
j

∂

∂βj
)

∂2

∂αi∂λ
I(q0, βj ,q1, αi, λ) (2.17)

where [8],

I(q0, β,q1, α, λ) =

∫ 1

0

dξ
1

ρ[(ρ+ β)2 + q2]
(2.18)

with

q = q0 + q1ξ (2.19)

ρ = [λ2 + (q2
1 + α2 − λ2)ξ − q2

1ξ
2]1/2. (2.20)

In computing equation (2.17), we set γ = 0, λ = 1, and
βj = αj + 2 (j = 1, 2). In the same way, we obtain the
dressed parts of the scattering amplitude,

fB1
±1 = −

µF

2π

∫
d3(Rr1r2)e−ikF ·R

′

eikI ·R

×
[
φ̃H∗

0 (r10)φHe+∗
0 (r2)VIφ

He
0 (r1, r2)

+ φH∗
0 (r10)φ̃He+∗

0 (r2)VIφ
He
0 (r1, r2)

+ φH∗
0 (r10)φHe+∗

0 (r2)VI φ̃
He
0 (r1, r2)

]
≈ −

µF

2π

∫
d3(r0r1r2)e−iq0·r0e−iq1·r1

×
[
φ̃H∗

0 (r10)φHe+∗
0 (r2)VIφ

He
0 (r1, r2)

+ φH∗
0 (r10)φ̃He+∗

0 (r2)VIφ
He
0 (r1, r2)

+ φH∗
0 (r10)φHe+∗

0 (r2)VI φ̃
He
0 (r1, r2)

]
. (2.21)

Using the exponential-parameter integration technique
developed earlier [11], it is easy to obtain the dressed am-
plitudes in the form

fB1
±1 = 16µF

2∑
i,j=1

CiCj Ĩij (2.22)

where

Ĩij =
2

β3
j

[
−u

∂2

∂αi∂q0ε
+ [u

∂

∂αi
+ vi(

∂

∂λ
−

∂

∂γ
)]

×
∂

∂q1ε
I(q0, γ,q1, αi, λ)

]

+ (
2

β3
j

−
1

β2
j

∂

∂βj
)

[
−u

∂2

∂αi∂q0ε

+(u
∂

∂αi
+ vi

∂

∂λ
)
∂

∂q1ε
I(q0, βj ,q1, αi, λ)

]

+ wj
2

β4
j

∂2

∂αi∂λ
J(q0, γ,q1, αi, λ)

− wj(
2

β4
j

−
2

β3
j

∂

∂βj
+

1

β2
j

∂

∂β2
j

)

×
∂2

∂αi∂λ
J(q0, βj ,q1, αi, λ)

− u
2

β3
j

T (q0, λ,q1 + q0, αi). (2.23)

In the equation above, u = −λε0/(ωωH), vi =
−αiε0/(ωωHe), wj = (ε0/ω)(αj/ωHe−2/ωHe+). The basic
integrals J and T are given by

J(q0, β,q1, α, λ) =

∫ 1

0

dξ
qε

q3

ρ+ β

ρ
(
π

2
− arctan

ρ+ β

q
)

(2.24)

T (q0, β,q1, α) =
4α

(α2 + q2
1)2

q0ε

q3
0

(
βq0

β2 + q2
0

− arctan
q0

β
)

(2.25)

where q and ρ are defined by equations (2.19) and (2.20),
respectively.

According to the S-matrix of equation (2.6), the
dressed charge transfer cross section is a sum over all par-
tial cross sections which correspond to a certain number
of photons exchanged,

dσB1

dΩ
=

+1∑
l=−1

dσB1

l

dΩ

=
+1∑
l=−1

kF

kI
|fB1

l |
2. (2.26)

3 Results and discussion

In Figure 2 we give the differential cross sections for elec-
tron capture of a proton from a dressed ground state he-
lium into a dressed ground state hydrogen in the center
of mass system. The impact energy is EL = 1000 keV
(measured in laboratory system). The field strength is
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Fig. 2. The laser-modified differential cross section for electron
capture from a dressed ground state helium into the dressed
ground state of the final hydrogen in the center of mass sys-
tem. The impact energy is EL = 1000 keV (measured in labo-
ratory system), field strength ε0 = 108 V cm−1, photon energy
~ω = 1.0 eV. Solid curve I: dressed cross section for a parallel
geometry ε0 ‖ kI . Solid curve II: dressed cross section for a
perpendicular geometry ε0 ⊥ kI . Dashed curve: cross section
for the laser-free case.

Fig. 3. The differential cross section in a perpendicular ge-
ometry as a function of azimuth angle at θ = 0.06◦, with
EL = 1000 keV, ε0 = 108 V cm−1, ~ω = 1.0 eV. Solid curve:
dressed cross section. Dashed curve: cross section for the laser-
free case.

ε0 = 1.0×108 V cm−1, frequency ~ω = 1.0 eV. Solid curves
I and II represent the laser-modified cross section for ge-
ometries ε0 ‖ kI and ε0 ⊥ kI respectively. The dashed
curve is the result for the laser-free case. It is known there
is a non-physical dip in the field-free cross section, how-
ever this dip does not appear in the laser-modified cross
sections. As a matter of fact, the dip that appears in the

Fig. 4. The relation between differential cross sections and
field strength at fixed frequency ~ω = 1.0 eV, with EL =
1000 keV, θ = 0.06◦. Solid curve I: laser-modified cross section
for ε0 ‖ kI . Solid curve II: laser-modified cross section for
ε0 ⊥ kI . Dashed curve: result for the laser-free case.

FBA cross section is caused by the strong cancellation be-
tween the scattering potentials [12], but does not appear
in other calculations [13,14]. The same feature also occurs
in each partial cross section of equation (2.26) (the curves

for partial cross sections dσB1

l /dΩ are not presented in
the figure). Because the dip positions of each partial cross
section are slightly different, thereby in the sum cross sec-

tion
+1∑
l=−1

dσB1

l /dΩ the dips are smoothed out. Both the

dressed results for a parallel geometry and for a perpendic-
ular geometry have no dips. For a parallel geometry, the
modified cross section is greater than that for laser ab-
sence throughout the angular range we considered. While
for a perpendicular geometry, the cross section is more
sharply focused forwardly just like that for laser absence.
At θ ∼ 0◦, the result for a perpendicular geometry is a
little higher than that for a parallel one. With angle in-
creasing, the former is gradually surpassed by the latter.
When the scattering angle exceeds 0.04◦, the laser modi-
fication for a parallel geometry nearly disappears.

When the polarization vector of laser is not in the in-
cident direction of proton, the collision is generally asym-
metric about the z-axis, and the differential cross sections
become azimuth-angle-dependent. Figure 3 describes the
cross section as a function of azimuth angle for geometry
ε0 ⊥ kI , at a scattering angle θ = 0.06◦ (ε0 is set in the
xz plane). At ϕ = 0◦, the curve gains its maximum, then
drops to a minimum at ϕ = 90◦ (the minimum is nearly
the same as the corresponding cross section for laser-free).
Because of the symmetric geometry, the curve is symmet-
ric about ϕ = 90◦.

In Figures 4-6, we exhibit the differential cross sec-
tion dependence on laser strength, frequency and polar-
ization direction. We find that the cross sections are in-
creasing functions of field strength, but decreasing factions
of laser frequency. This is consistent with equation (2.5).
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Fig. 5. The relation between differential cross sections and
laser frequency at fixed field strength ε0 = 107 V cm−1, and
EL = 1000 keV, θ = 0.06◦. Solid curve I: dressed result for
ε0 ‖ kI . Solid curve II: dressed result for ε0 ⊥ kI . Dashed
curve: result for the laser-free case.

Fig. 6. Differential cross section dependence on polarization
direction at θ = 0.06◦, ϕ = 0◦, with EL = 1000 kev, ε0 =
108 V cm−1, ~ω = 1.0 eV. Solid line: laser present. Dashed
line: laser free.

Especially for ε0 ‖ kI , the dressing effect is notable. Fig-
ure 6 shows that the dressed cross section is a periodic
function of the polarization direction. This is quite dif-
ferent from the corresponding result for the laser-assisted
proton-hydrogen electron capture. The difference is essen-
tially caused by the different electron cloud distributions
between the dressed hydrogen and helium targets.

Figure 7 displays the integral capture cross sections in
the energy range where the laser-free cross section agrees
well with experiment. The black dots denote the exper-
imental result of Barnett et al. for a laser-free case [4,
15], in which the capture into all hydrogen states are in-
cluded. Since in the present calculation only capture into
the ground state is considered, the agreement for the laser-
free case is better than the dashed curve would indicate.
Figure 7 shows that the laser assisted total capture cross

Fig. 7. Integral cross section for laser-assisted ground state
electron capture at ε0 = 108 V cm−1, ~ω = 1.0 eV. Solid curve
I: result for ε0 ‖ kI . Solid curve II: result for ε0 ⊥ kI . Dashed
curve: result for laser-free case. Black dots: experimental result
of Barnett et al. for capture into all hydrogen states in laser
absence.

section is larger than the field-free cross section, and this
difference steadily increase with the impact energy. This
seems in contradiction with the conclusion of Byron et al.
[9] and our earlier calculation on e+−H rearrangement col-
lision [8]. In fact at high energy, unlike other collisions in
which the nucleus-nucleus interaction gives the dominant
contribution (the internuclear interaction is not affected
by the electron state of the target), the electron capture
collision is dominated by the nucleus-electron interaction,
and the internuclear potential gives no contribution [3,16,
17]. Therefore the capture cross section is quite sensitive
to the electron states of the target in a certain energy
range. Even for e+−H rearrangement collision, the differ-
ence between the dressed total capture cross section and
the laser-free cross section also increases with EL at higher
energy [18]. The curves also show that a parallel geome-
try leads to greater cross sections than a perpendicular
geometry does.

Figures 8 and 9 demonstrate the dependence of the
integral cross sections with respect to the field strength
and photon energy. In both geometries, the laser-modified
cross sections go up with the field intensity, but drop down
with frequency. With ε0 → 0 or ω → ∞, the cross sec-
tions approach the asymptotic value, the laser-free result.
Figure 10 depicts the dependence of the integral cross sec-
tions on polarization direction. The dressing effect reaches
its highest when the electric vector is parallel or anti-
parallel to the incident direction; and is at its lowest when
the electric vector is perpendicular to it.

4 Concluding remarks

We have applied the laser-assisted collision theory to the
electron capture in collisions between protons and helium
targets. From the results obtained, we find that the laser
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Fig. 8. Dressed integral cross sections as functions of field
strength at ~ω = 1.0 eV, EL = 1000 keV. Solid curve I: result
for ε0 ‖ kI . Solid curve II: result for ε0 ⊥ kI . Dashed line:
result for laser-free.

Fig. 9. Laser-modified integral cross sections against field
frequency at fixed strength ε0 = 107 V cm−1, with EL =
1000 keV. Solid curve I: result for ε0 ‖ kI . Solid curve II:
result for ε0 ⊥ kI . Dashed curve: result for laser-free case.

modified cross sections for capture from hydrogen and
from helium have some common features: for instance, the
laser field promotes the capture cross sections, and the
cross sections are increasing functions of laser strength,
and decreasing functions of laser frequency. However we
observe some significant differences in these two cases.

For capture from hydrogen targets, the laser modifica-
tion on differential cross sections for both parallel and per-
pendicular geometries disappears at large scattering angle.
However, for the helium targets, the laser promotion for a
parallel geometry covers quite a wide angular range. This
implies that even when the proton “penetrates” into the
target helium, the passive-electron-proton interaction con-
tributes to capture cross sections. If the passive electron
happens to be on the side opposite to the transferred elec-
tron, its attraction on proton will reduce the repulsion of
the target nucleus. According to the mechanism we sug-

Fig. 10. Integral cross section dependence on polarization di-
rection at EL = 1000 keV, ε0 = 108 V cm−1, ~ω = 1.0 eV.
Solid curve: laser present. Dashed line: laser free.

gest, the field can only change the cross section through
the dressed electron. Thus at large angle, the dressing on
the differential cross section for a parallel geometry covers
a wide range. For a perpendicular geometry, the dressing
changes the relative velocity between the incident proton
and the captured electron only slightly, the laser modifi-
cation in the latter case is not as significant as that in the
former.

The integral cross sections for both targets also exhibit
distinct differences. For the dressed capture from hydro-
gen, the integral cross section is sensitive to the polariza-
tion direction at low energy, but for helium we find it sen-
sitive at high energy. For hydrogen the cross section for
a perpendicular geometry is higher than that for a par-
allel geometry; for helium, the results are contrary. The
mechanism of these features comes from several different
sources. Among those the difference in the electron cloud
distribution between them provides an essential contribu-
tion. Because the nucleus-electron interactions contribute
an important part to the electron capture cross section,
and the dressing of electrons is much larger than that of
nuclei, the different dressing electron states of hydrogen
and helium result in the striking difference between the
corresponding capture cross sections. For a helium tar-
get, the interactions among the dressed atoms and ions
are much more complicated than those for an atomic hy-
drogen target. Fortunately, the Coulomb binding in the
helium atom and in the helium ion is far stronger than
that in hydrogen, and the dressing contribution to the he-
lium atom and the helium ion is much smaller than that
to hydrogen at the field strength considered. Only at the
moment of collision, the laser “loosens” the helium target,
which is favorable to electron capture. The dressed term
of final state hydrogen plays an important role. For the
capture from an atomic hydrogen target, both the dressed
states of target hydrogen and the final state hydrogen have
contributions to the capture cross section.
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